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Mechanical Testing

Hysteresis

Bench-Testing

Fracture Toughness
‣ Is the critical stress intensity factor, or KIc, relating the strength to the critical crack size,

through the Griffith-Irwin relation.

‣ It is obtained through the strength testing of a specimen containing a crack with a 

defined size and geometry.

‣ The crack geometry function is particular to each specific test configuration, loading 

condition, crack shape and size relative to the thickness of the specimen.

Flexural Strength
‣ It measures the critical outer fibre stress in bending necessary for the largest defect in

a specimen volume and surface to reach the critical stress intensity factor.

‣ A test series contain preferably >30 specimens in order to sample the defect size 

distribution of the parent defect population, resulting in a distribution of strength.

‣ Whether in uniaxial or biaxial stress, the distribution of strength values is analysed using 

Weibull statistics to obtain the Weibull modulus and the characteristic strength.

Subcritical Crack Growth (Fatigue)
‣ It characterizes the susceptibility of a material to undergo crack growth when

subjected to a stress level below the critical stress for quasi-static fracture.

‣ It can have a chemical nature, such as through the corrosive action of water on oxide 

bonds, or purely mechanical, by the degradation of toughening mechanisms.

‣ It is tested using strength tests under different conditions: dynamic, static or cyclic 

loading, yielding the fatigue exponent n and crack velocity relations.

R-Curve Behavior
‣ Occurs in materials where the fracture toughness is not a single material property, but

it rather increases during the extension of a crack.

‣ It is mostly induced by microstructural features as opposed to amorphous materials, in 

which crystals, particles, fibers, etc. induce shielding mechanisms.

‣ It is tested using fracture toughness tests by tracking the crack extension during 

loading, using optical or compliance techniques.

‣ Is a mechanical behaviour characterised by its time-dependency on the strain, when
the elastic recovery has a time delay.


‣ It is mostly present in viscoelastic materials, but can also be induced in ceramics by the 
action of frictional elements that oppose crack closing.


‣ It is tested using typical tension or bending tests below the critical stress by loading and 
unloading, needing an accurate measurement of the specimen’s compliance.

‣ (Left): Strength of a ceramic
beam being tested under 4-point
bending in a universal testing
machine (quasi-static).


‣ (Right): Weibull plot showing the 
failure probability distribution of 
strength values in specimens with 
different volumes and surface 
areas.

‣ (Left): Fracture toughness
testing of a ceramic
specimen containing a
sharp precrack in a
bending jig.


‣ (Right): Load-displacement 
diagram traced by optical 
speckle tracking formed by 
laser illumination.

‣ (Left): Ball-on-3-Balls configuration
in round discs and square plate
configurations for the mechanical
testing of quasi-static and fatigue of
dental ceramics.


‣ (Right): Sinusoidal stress profile 
utilised for fatigue cyclic 
experiments in bending mode. 

‣ (Left): Optical tracking
and measurement of
different crack lengths
on the specimen
following interrupted
measurements.


‣ (Right): Elastic-plastic R-
curve plot for two fiber-
reinforced composites.

‣ (Left): Optical
tracking of specimen
compliance using a
laser.


‣ (Right): Hysteresis 
plots showing the 
time-dependency of 
load recovery.

‣ (Left): Testing and
simulation of the
hoop-strength test
using Finite Element
Analysis.


‣ (Right): Chewing 
simulation in 
thermo-tempered 
chambers of dental 
crowns.

‣ Are non-standardised mechanical tests that incorporate aspects relevant to the real-life
application, by modifying loading configurations, test parameters and geometry.


‣ They deliver behaviors that may be easier to relate to application scenarios, but tend 
to be more phenomenological and less formalized.


‣ Most bench-tests in dental materials take the form of chewing simulation or strength 
tests using specimens with geometries analogous to dental prostheses.
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